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ABSTRACT 

The basic requirement of Newton’s method in solving systems of nonlinear equations 
is, the Jacobian must be non-singular. This condition restricts to some extent the 
application of Newton method. In this paper we present a modification of Newton’s 
method for systems of nonlinear equations where the Jacobian is singular. This is 
made possible by approximating the Jacobian inverse into a diagonal matrix by 

means of variational techniques. The anticipation of our approach is to bypass the 
point in which the Jacobian is singular. The local convergence of the proposed 
method has been proven under suitable assumptions. Numerical experiments are 
carried out which show that, the proposed method is very encouraging. 
 
Keywords: Nonlinear equations, diagonally update, Jacobian, singular. 

 

 

INTRODUCTION 

Let us consider the problem of finding the solution of nonlinear 

equations   

 

   ( ) 0,F x =            (1) 

 

where 1 2( , ... ) : n n

n
F f f f R R= →  is assumed to satisfy the following 

assumptions: 

 

A1.  F is continuously differentiable in on open neighbourhood .nE R⊂  

A2.  There exists a solution x∗   in E  such that ( ) 0F x∗ =   and ( )F x∗′  is 

non-singular at a solution. 

A3.  The Jacobian ( )
k

F x′  is Lipschitz continuous at .x∗   
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The best-know method for finding the solution to (1), is the Newton’s 
method, in which the Newtonian iterations are given by:  

 

(2) 

 

where  0,1,2 .k = …  If ( )F x∗′  is non-singular at a solution of (1) , the 

convergence is guaranteed and the rate is quadratic from any initial point 0x  

in the neighbourhood of x∗ (Dennis and Wolkowicz (1993); Shen and Ypma 

(2005)), i.e.  
 

   
2

1k kx x h x x
∗ ∗

+ − ≤ −    (3) 

 

for some .h   When the Jacobian is singular the convergence rate may be 

unsatisfactory, i.e. it slows down when approaching a singular root and the 

convergence to x∗  may even be lost (Leong and Hassan (2009); Hassan et 

al. (2009); Dennis and Schnabel (1983); Waziri et al. (2010)). This 

condition (non-singular Jacobian ( ) 0F x∗′ ≠ ) restricts to certain extent the 

application of Newton’s method for solving nonlinear equations (Kelly 

(1995)). Some approaches have been developed to overcome this 

shortcoming. The simplest approach is incorporated in the fixed Newton’s 

method. The method generates an iterative sequence{ }
k

x from a given initial 

guess 0x  (Ortega and Rheinboldt (1970); Waziri et al. (2010); Farid et al. 

(2011))  
 

                  (4) 

        
This method overcomes both the disadvantages of Newton’s method 

(computing and storing the Jacobian in each iteration) but the method is 

significantly slow. From the computational complexity point of view, the 

fixed Newton is cheaper than Newton’s method (Ortega and Rheinboldt 
(1970)), however, it still requires computing and storing the Jacobian at 

initial guess 0.x   

 
The idea of diagonal updating has been used by (Modarres et al. 

(2011); Grapsay and Malihoutsakit (2007); Leong et al. (2010)) on 

unconstrained optimization. Leong et al. (Modarres et al. (2011)) 
approximates the Hessian into a diagonal matrix and Hassan et al. (2003) 

focuses on the Hessian inverses diagonal updating. In this paper we 

1

1
( ( )) ( ),

k k k k
x x F x F x−

+
′= −

1

1 0
( ( )) ( ), 0,1,2, .

k k k
x x F x F x k−

+
′= − = …
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proposed a modification of Newton’s method for nonlinear systems with 

singular Jacobian at the solution ,x∗ by approximating the Jacobian inverse 

into a diagonal matrix. The anticipation has been to bypass the point at 

which the Jacobian is singular, since we do not need to compute the 
Jacobian at all. The method proposed in this work is computationally 

cheaper than Newton’s method and fixed Newton’s method in term of CPU 

time, due to the fact that our strategy is derivatives free and the 

approximation is only on the diagonal elements.  
 

 

JACOBIAN-FREE DIAGONAL NEWTON’S METHOD FOR 

SOLVING NONLINEAR SYSTEMS WITH SINGULAR 

JACOBIAN (JFSJ) 

In this section, we derive Jacobian-Free diagonal Newton’s method 

for solving nonlinear systems with singular Jacobian. We start by the mean 

value theorem, to obtain the secant‘s equation 
 

 ( ) ,
k k k

F x x F′ ∆ = ∆                                          (5) 

 

 where ( )
k

F x′  is the Jacobian matrix, 
1k k k

x x x+∆ = −  and  

1
( ) ( )

k k k
F F x F x+∆ = − . 

  

On the other hand, (5) can be rearranged to give  
 

 1( ( )) .
k k k

x F x F−′∆ = ∆  (6) 

 
Let G  be an approximation of the Jacobian inverse into a diagonal matrix 

i.e.  
 

 (7) 
      

 

We propose to update G  by adding a correction U  (diagonal matrix) in 

each iteration i.e.  
 

1
.

k k k
G G U+ = +                                        (8) 

 

 

1( ( )) ,
k

F x G−′ ≈
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To obtain the accurate information of the Jacobian inverse in relation to the 

updating matrix, 
1
,

k
G + we entail 

1k
G +  to satisfy the secant’s equation (5), i.e.  

 

( ) .
k k k k

x G U F∆ = + ∆                                        (9) 

 
Now, we can write using the weak secant condition Farid et al. (2010), 

Leong and Hassan (2011) and Natasa and Zorna (2001) to obtain 
 

( ) .T T

k k k k k k
F x F G U F∆ ∆ = ∆ + ∆                (10) 

 

In order to ensure superior condition number and numerical steadiness in the 

approximation, we effort to control the error of the U  (correction) through 

the following problem.  
 

21
min

2

s.t ( ) ,

k F

T T

k k k k k k

U

F G U F F x∆ + ∆ = ∆ ∆

                         (11) 

 

where .
F

 is the Frobenius norm. Denoting 1 2( , , , )
n

U diag τ τ τ= … and   

(1) (2) ( )( , , ),n

k k k k
F F F F∆ = ∆ ∆ ∆…  therefore we can rewrite (11) as follows 

 

2

2 2 2

1 2

( )

1

1
min ( )

2

s.t .

n

n
i T T

k i k k k k k

i

F F x F G F

τ τ τ

τ
=

+ + +

∆ = ∆ ∆ − ∆ ∆∑

…

                         (12) 

 
The solution of (12) can be found through taking into consideration its 

Lagrange function as follows 

22 2 2 ( )

1 2

1

1
( , ) ( ) ( ).

2

n
i T T

i n k i k k k k k

i

L F F x F G Fτ λ τ τ τ β τ
=

= + + + + ∆ − ∆ ∆ + ∆ ∆∑…   (13) 

 

where  β   is the corresponding Lagrange  multiplier.  
 

Differentiating (13) with respect to each  
i

τ   and equating them to zero, we 

get  

                            
2( )

0, 0,1,2,...,
i

i k

i

L
F i nτ β

τ

∂
= + ∆ = =

∂
.                         (14) 
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 It follows from (13) that 
 

2( ) , 0,1,2,..., .i

i k
F i nτ β= − ∆ =                               (15) 

 

 Multiplying (15) by  
2( )i

k
F∆   and summing over  n  , we have  

2 4( ) ( )

1 1

.
n n

i i

k i k

i i

F Fτ β
= =

∆ = − ∆∑ ∑                                         (16) 

 

In order to invoking the constraint, we differentiate (13) with respect to β   

which yields 

2( )

1

.
n

i T T

k i k k k k k

i

F F x F G Fτ
=

∆ = ∆ ∆ − ∆ ∆∑                           (17) 

 

Using (16) and (17), it follows that  

 

4( )
1

T T

k k k k k

in
i k

F x F G F

F
β

=

∆ ∆ − ∆ ∆
= −

∆∑
                                    (18) 

 

Substituting (18) into (15), followed by some algebraic manipulation, we 

obtain: 

2

4

( )

( )
1

( )
, 1,2, , .

T T

ik k k k k

i kin
i k

F x F G F
F i n

F
τ

=

∆ ∆ − ∆ ∆
= ∆ =

∆∑
…                      (19) 

 

Letting  
2 2 2(1) (2) ( )( , , , )n

k k k k
E diag F F F= ∆ ∆ ∆…   and  

4( ) 2
1 ( )in

i k k
F Tr E= ∆ =∑   

where  Tr   is the trace operation, yields  

 

2

( )
.

( )

T T

k k k k k

k k

k

F x F G F
U E

Tr E

∆ ∆ − ∆ ∆
=                               (20) 

 
Finally, we present the proposed updating scheme as follows:  

 

1 2

( )
.

( )

T T

k k k k k

k k k

F x F G F
G G E

Tr E
+

∆ ∆ − ∆ ∆
= +                               (21) 
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We safeguard the possibly very small 
k

F∆  and  2( ),Tr E  where
4

10 .
k

F
−∆ ≥  

If not set 1 .
k k

G G+ =  Based on the above explanation, we have the following 

algorithm. 

 

Algorithm JFSJ: 
 

Step 1: Given  0x   and  0 ,
n

G I=  set  0k =   

Step 2: Compute  ( )
k

F x   

Step 3: Compute  1 ( )
k k k k

x x G F x+ = −  

Step 4: Check if 
4

2
( ) 10

k k
x F x

−∆ + ≤ stop. If not go to step 5.  

Set  : 1k k= +        

Step 5: If 
4

2
10 ,

k
F

−∆ ≥ compute 1k
G +  using formula (21), else set  

1k k
G G+ =  and go to 2. 

 

 

CONVERGENCE ANALYSIS 

To analyze the convergence of the proposed method, we will make 

the following standard assumptions on F .  

 

Assumption 1 

(i)  F   is differentiable in an open convex set  E   in  nℜ  

(ii) There exists  x E∗ ∈   such that  ( ) 0,F x∗ = ( )F x′   is continuous for all 

.x  

(iii) ( )F x′ Satisfies Lipschitz condition of order one i.e. there exists a 

positive constant µ such that  

 

( ) ( )F x F y x yµ′ ′− ≤ −                           (22) 

for all  , nx y ∈ℜ    

(iv) There exists constants 1 2c c≤ such that 
2 2

1 2
( )Tc F x cω ω ω ω′≤ ≤   for 

all x E∈   and .nω ∈ℜ To prove the convergence of JFSJ method, we 

need the following result. 
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Theorem 3.1. 

Let Assumption 1 holds. There are  0,
B

K > 0δ >  and 
1

0,δ >  , such that if  

0
( )x B δ∈  and the matrix-valued function ( )B x  satisfies 

1( ) ( ) ( )I B x F x xρ δ∗′− = <   for all  ( )x B δ∈   then the iteration  

 

1
( ) ( ),

k k k k
x x B x F x+ = −                (23) 

 

converges linearly to  .x∗  

 
For the proving of Theorem 3.1 see Kelly (1995). 

 

Based on the Theorem 3.1 together with our explanation in the previous 

section, we have the following results. 
 

Theorem 3.2 

With that the assumption 1 holds, there are constant  0,β >  0,δ > 0α >   

and  0,γ >  such that  if  
0

x E∈   and  
0

D   satisfies  0 ( ) ,
F

I G F x δ∗′− <  

where .
F

denotes the Frobenius norm  for all  x E∈   then the  iteration  

 

1
( )

k k k k
x x G F x+ = −  

 

where  
k

G   defined by (21), converges linearly to .x∗   

 

Proof. 

We need to show that the updating formula 
k

D  satisfied  

( ) ,k k
F

I G F x δ∗′− <  for some constant 0
k

δ >  and all .k   

1
,

k k kF F
G G U+ = +  it follows that  

 

1
.

k k kF F F
G G U+ ≤ +                                           (24) 

 
 

 



Mohammed Waziri Yusuf ,  Wah June Leong & Malik Abu Hassan 

 

248 Malaysian Journal of Mathematical Sciences 

 

For  0k =   and assuming  
0

,D I=  we have  

 

1 0 0
.

F F F
G G U≤ +              (25) 

 

Since  
0 n

G I=   hence  
0

.
F

G n=  From (20) when  0k =   we have 

  

2

2

( ) ( )0 0 0 0 0
0 02

0

(max)0 0 0 0 0

02

0

| |
( )

| |

( )

T T

i i

T T

F x F G F
U F

Tr E

F x F G F
F

Tr E

∆ ∆ − ∆ ∆
= ∆

∆ ∆ − ∆ ∆
≤ ∆

                               

4

2 4

(max)0 0 0 0 0

0(max) ( )

10

| |
.

T T

in
i

F x F D F
F

F F=

∆ ∆ − ∆ ∆
= ∆

∆ ∆∑
                                 (26)    

 

Since   
4(max)

0

4( )
01

1,
n i

i

F

F
=

∆

∆
≤

∑
 then (26) turns into  

2

( ) 0 0 0 0 0

0 (max)

0

| ( ) |
| | .

T T

i F F x F F G F
U

F

′∆ ∆ − ∆ ∆
≤

∆
            (27) 

 

From condition (iv) and since 
1 2

,c c≤ but 
1

c  and 
2

c  can be negative, hence 

we may not have 
1 2

.c c≤  Therefore, we choose the largest among 

1 2
 and c c   (i.e. 

1 2
max{| |,| |}c c c= ), then (27) becomes  

 

2

( ) 0 0
0 (max)

0

| | ( )
| | .

T

i c n F F
U

F

− ∆ ∆
≤

∆
              (28) 

 

Since  
2 2( ) (max)

0 0

iF F∆ ≤ ∆   for  1,..., ,i n=   it follows that  

 
2

2

(max)
( ) 0
0 (max)

0

| |
| | .

i c n F
U

F

− ∆
≤

∆
             (29) 

 

 



Jacobian-Free Diagonal Newton’s Method for Solving Nonlinear Systems with Singular Jacobian 

 

 Malaysian Journal of Mathematical Sciences 249 

 

 Hence we obtain  
3
2

0 | | .
F

U n c n≤ −                           (30) 

 

Suppose  
3
2 | |,n c nα = −  then  

 

0 .
F

U α≤                (31) 

 

Substituting (31) into (25) and let  ,nβ α= +  it follows that  

 

1 .
F

G β≤                             (32) 

 

At 0,k =  it's assumed that 0 ( ) ,
F

I G F x δ∗′− <  then we have 

 

1 0 0

0 0

( ) ( ) ( )  ,

( ) ( )  ,

F F

F F

I G F x I G U F x

I G F x U F x

∗ ∗

∗ ∗

′ ′− = − +

′ ′≤ − +
 

 

0 0( ) ( )  ,
FF F

I G F x U F x∗ ∗′ ′≤ − +         (33) 

 

hence 1 1( ) .
F

I G F x δ αϕ δ∗′− < + =  (Even when ( ) 0
F

F x
∗′ =  ). Thus, by 

induction,  ( )k k
F

I G F x δ∗′− <   for all  .k  Therefore from Theorem 3.1, the 

sequence generated by Algorithm JFSJ converges linearly to .x∗  

 

 

NUMERICAL RESULTS 

In order to demonstrate the performance of our new proposed 

method (JFSJ) for solving nonlinear systems with singular Jacobian, it has 

been applied to some popular problems. We implemented the method (JFSJ) 
using variable precision arithmetic in Matlab 7.0 . All the calculations were 

carried out in double precision computer. The stopping criterion used is  

 
4

( ) 10 .
k k

x F x
−∆ + ≤                                        (34) 
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We present and describe the used test problems as follows: 
 

Problem 1. (Jose et al. (2009)).  2 2:f R R→   is defined by  

 
2

1 1 2

5

1
1

2

2

( 1) ( )

( )
( 2) cos

x
x

x x x

f x
x

 − −


=   
−  

 

 

 

0 (0,3) , (0.5, 2)x =   are chosen and   (1,2).x∗ =  

 

Problem 2. (Ishihara, K. (2001)). 3 3:f R R→  is defined by   

 
2

1 2 1

2

1 2 3 2

2

2 3 3

4 2 3

( ) 4 3

2 4 3

x x x

f x x x x x

x x x

 − + −


= − + − + −


− + + −

 

 

0 ( 1.5,0, 1.5), (4,0, 4), ( 1,5, 1), (4, 4, 4), ( 10,0, 10)x = − − − − − −   are chosen and  

(1,1,1).x∗ =  

 

Problem 3. 2 2:f R R→   is defined by  
 

22

1

2 2

2

2
sin( 1) 1

1
( )

2
sin( 1) 1

1

x
x

f x

x
x


+ − − +

= 
 − + + −
 +

 

 

0 (0.5,0.5), (2, 2), (0.1,0.1)x =    are chosen and  (1,1).x∗ =   

 

 Problem 4. 2 2:f R R→   is defined by  

 

1 1

2 2

1 tan(2 2 cos ) exp(sin )
( )

1 tan(2 2 cos ) exp(sin )

x x
f x

x x

+ − −
= 

+ − −
 

 

0 (3,0), (0, 0.5), ( 0.5, 0.5)x = − −   are chosen and   (0,0).x∗ =   
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Problem 5.  2 2:f R R→  is defined by   

 

1

2

2

1

1
( )

1

x

x

e x
f x

e x

 + −
= 

+ −
 

 

 0 ( 0.5, 0.5)x = − −  is chosen and (0,0).x∗ =  

 

Problem 6.  3 3:f R R→  is defined by   

 

1 1 2

2 2 1

3 3

cos 9 3 8exp( )

( ) cos 9 3 8exp( )

cos 1

x x x

f x x x x

x x

− + +


= − + +
 − −

 

 

0 ( 1, 1, 1), (3,3,3)(0.5,0.5,0.5), ( 3, 3, 3)x = − − − − − −   and  (0,0,0).x∗ =  

 

Problem 7. (Ishihara, K. (2001)). 2 2:f R R→  is defined by  

 
2

1 2 1

2

1 2 1

4 2 3
( )

2 4 3

x x x
f x

x x x

 − + −
= 

− + + −
 

 

0 (3,3), (0, 1.5), ( 2,3), (0, 2)x = − −   are chosen and  (1,1).x∗ =   

 

Problem 8. 2 2:f R R→  is defined by   

 
2 2

1 2

2

1 2

3
( )

cos( ) 1/(1 )

x x
f x

x x

 −
= 

− +
 

 

0 (0.5,1)x =  is chosen and  (0,0).x∗ =  
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Problem 9. (Shen and Ypma (2005)). 2 2:f R R→   is defined by  

 
2 2

1 2

2 2

1 2

( )
3 3

x x
f x

x x

 −
= 

−
 

 

0 (0.5,0.4), ( 0.5, 0.4), ( 0.3, 0.5)x = − − − −  and (0.4,0.5) are chosen and  

(0,0).x∗ =  

 
TABLE 1: The Numerical Results of JFSJ method on Problems 1-9 

 

Problems 0
x  

Number of 

iteration 
CPU time 

1 (0,3)  9 0.0002 

 (0.5, 2)  7 0.0001 

2 (-1.5, 0, -1.5)  17 0.0156 

  (4,0,4) 38 0.0311 

 (-1, 0.5, -1) 

(-10,0,-10) 

(4,4,4)  

15 

51 

10 

0.0009 

0.0312 

0.0311 

3 (0.5,0.5)  18 0.0281 

 (1.5, 1.5)  

(2, 2) 

18 

27 

0.0252 

0.0310 

           (0.1,0.1) 8 0.0013 

4 (3,0)  12 0.0006 

 (0, 0.5)  

(-0.5, -0.5) 

8 

6 

0.0004 

0.0004 

5 (-0.5,-0.5) 5 0.0003 

6 (-1,-1,-1) 

(3,3,3) 

(-3,-3,-3) 

(0.5,0.5,0.5) 

10 

15 

19 

8 

0.0156 

0.0321 

0.0388 

0.0018 

7 (-2,3) 

(3,3) 

14 

11 

0.0156 

0.0107 

 (0,-1.5) 

(0,2) 

18 

10 

0.0168 

0.0003 

8 (0.5,1) 39 0.0312 

9 (0.5,0.4) 11 0.0010 

 (-0.5,-0.4) 21 0.0156 

 (-0.3,-0.5) 9 0.0006 

 (0.4,0.5) 12 0.0012 
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The numerical results of our proposed method (JFSJ) is reported in 
Table 1, which include number of iteration and CPU time in seconds. From 

Table 1 it appears that, proposed method of this paper JFSJ has solved all 

the tested problems with their respective initial guesses.  Moreover the 
results are very encouraging for our method. Indeed we observe that JFSJ 

method requires little CPU time to converge to the solution, due to the fact 

that Newton’s method may likely fails to converge if the Jacobian is 

singular. 
 

Another advantage of our method over Newton’s method and Fixed 

Newton method is the storage requirement; this is more noticeable as the 
dimension increases. 

 

 

CONCLUSION 

In this paper, we have presented a modification of Newton‘s method 

for solving systems of nonlinear equations with singular Jacobian. Our 
scheme is based on approximating the Jacobian inverse to a non-singular 

diagonal matrix without computing the Jacobian at all. The anticipation has 

been to bypass the point at which the Jacobian is singular. Among its 

desirable feature is that it requires very low memory requirement in building 
the approximation of the Jacobian inverse.  In fact, the size of the update 

matrix increases in ( ),O n  as oppose to Newton’s and Fixed Newton 

methods that increase in 2( ).O n  This is more noticeable as the dimension of 

the system increases.   

 

Finally, we conclude that, to the best of our knowledge there are not 

many alternatives when the Jacobian matrix of a nonlinear system is 
singular. As such, this result confirms that our method (JFSJ) is a good 

alternative to Newton method and fixed Newton, especially when the 

Jacobian is singular at any point .kx  
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